
Let’s figure out how to compute surface integrals over parametrically defined
surfaces!

1 Cartesian

The first step we took when we evaluated a path integral was to define the path
using parametric equations, like

x(t) = cos(t) y(t) = sin(t)

for movement around a circle. So the initial step I took was to figure out how to
define a surface using parametrics, and I came to the conclusion that to define
a surface we need two variables. I thought of it like adding two parametric
equations that define motion along lines. The first could be x(a) = (a, 0, 0) and
the second could be x(b) = (0, b, 0). Adding the two would give x(a, b) = (a, b, 0),
so at any point we could move in the î direction by changing a, and we could
move in the ĵ direction by changing b. Another way I tried to justify this to
myself was by using ideas from linear algebra. If you were standing on any
surface, if you looked at a small enough section of it up close, the surface would
seem locally flat. A basis for R2 has two linearly independent vectors, so as long
as a and b describe motion in different directions it should make a surface.

So, a surface can be defined by three parametric equations each with two
variables. For the x-y plane, these equation could look like.

x(a, b) = a y(a, b) = b z(a, b) = 0

If we wanted to only look at a section of the plane, say for 0 ≤ x ≤ 2 and
0 ≤ y ≤ 1, we can bound a and b, and in this case we bound a to the same
values as x and b to the values of y.

Next we need to find n⃗ and A. For this plane, the normal vector will always
be in the z-direction, and the total surface area is 2, but that’s only easy to find
in this case. While sitting in the airport waiting for my flight I thought of a
way to generalize finding n⃗ and A in the same step. Earlier I mentioned how
varying a and b would change the position in distinct directions. If we pick a
random point P on the surface, then, going back to the locally flat argument,
any point close to P can be approximated by adding P to a linear combination
of the a direction vector and b direction vector at P , so the normal vector at
that point should be perpendicular to both, and can be found with the cross
product. Now I just had to figure out what the a and b directions were.

Only focusing on the a direction, one way to find it would be to start at
a point P , say given by (x(a, b), y(a, b), z(a, b)), and take a small step in the
a direction ∆a. The new point P ∗ would be given by (x(a + ∆a, b), y(a +
∆a, b), z(a + ∆a, b)). The direction from P to P ∗ would be given by P ∗ − P .
Already this is looking like a derivative, and dividing by ∆a and taking the limit
as a → 0, we should get the a direction vector (I’ll call this a⃗)

1



a⃗ = lim
a→0

(x(a+∆a, b), y(a+∆a, b), z(a+∆a, b))− (x(a, b), y(a, b), z(a, b))

∆a

By moving the subtraction inside each component, distributing the divi-
sion across components, and moving the limit inside each component, we get
derivatives with respect to a.

a⃗(a, b) = (
d

da
x(a, b),

d

da
y(a, b),

d

da
z(a, b))

Really a⃗ is a function of a and b, because for almost any surface it will
change depending on where you are. Because b is given as an argument when
evaluating a⃗ at some point, and taking the derivative with respect to a only
changes the first input in each position function, b should be able to be treated
like a constant when taking the derivative. So, for this plane example,

a⃗(a, b) = (
d

da
a,

d

da
b,

d

da
0)

a⃗(a, b) = (1, 0, 0)

And the same should hold true for b⃗

b⃗(a, b) = (
d

db
x(a, b),

d

db
y(a, b),

d

db
z(a, b))

b⃗(a, b) = (
d

db
a,

d

db
b,

d

db
0)

b⃗(a, b) = (0, 1, 0)

I think these results make sense for our plane example, where a causes a
change in the î direction and b causes a change in the ĵ direction. I mentioned
earlier that we can find n⃗ with a cross product, so

n⃗(a, b) = a⃗(a, b)× b⃗(a, b)

n⃗(a, b) = (0, 0, 1)

This also makes sense, because n⃗ is what we dot with E, and if the surface is in
the x-y plane, the normal vector should be only in the k̂ direction so that only
the k̂ component of E matters. Around this point I realized that we’ve actually
aready found A, because we are using the cross product, which returns a vector
perpendicular to the first two and with magnitude equal to the swept out area!
So actually this n⃗ is already An̂.

Just to make sure it works, we can define E⃗(x, y, z) = (0, 0, 1), and plug into
the integral.

ΦE =

¨
E⃗ · d⃗A

2



=

¨
(0, 0, 1) · (0, 0, 1)

=

¨
1

Whoops. What am I integrating with respect to? I think it should be da for
one integral and db for the other, but I needed to find where those came from.
The only place it makes sense for them to be is somewhere in d⃗A, and really
what this is is a local linear approximation.

When we look for a⃗, what we really want is to get P ∗ − P (i.e. ∆P ) for a
small change ∆a. This is an LLA!

∆P = P ′(a, b)∆a

dP =
d

da
P (a, b)da

Here what I’ve been calling a⃗ is really dP , and the same is true with respect to
b

a⃗(a, b) = (
d

da
x(a, b),

d

da
y(a, b),

d

da
z(a, b))da

b⃗(a, b) = (
d

db
x(a, b),

d

db
y(a, b),

d

db
z(a, b))db

So n⃗ for our plane example is really

a⃗(a, b)× b⃗(a, b)

(0, 1, 0)da× (0, 0, 1)db

Scalars distribute across the product but only to one term (c(v ×w) = cv ×w)
because the determinant of a matrix is linear in each row separately.

(0, 0, 1)dadb

Now we can try that integral again

ΦE =

¨
E⃗ · d⃗A

=

¨
(0, 0, 1) · (0, 0, 1)dadb

=

¨
(0, 0, 1) · (0, 0, 1)dadb

Here we can take dadb out of the dot product.

=

¨
[(0, 0, 1) · (0, 0, 1)]dadb

=

¨
1dadb

3



Earlier we said 0 ≤ a ≤ 2 and 0 ≤ b ≤ 1, so those are our bounds for integration

=

ˆ 1

0

ˆ 2

0

1dadb

And evaluating one integral after another we get our final answer of 2!

4



2 Polar

Doing this integral in a different coordinate system is slightly more difficult
because each unit of area is not the same as it was in Cartesian coordinates.
Let’s do a quick example to see how this breaks. Suppose we want to find the
flux of some vector F field through a sphere of radius 1. In polar coordinates,
a sphere with radius 1 can be parametrized by

P (θ, ϕ) = (θ, ϕ, 1)

where θ ∈ [0, 2π] and ϕ ∈ [0, π]. (It doesn’t matter that some of these points
overlap, their area will be 0). And let’s say that F = 1r̂. Then the surface
integral should be equal to 4π, the surface area of the sphere.

∂P

∂θ
= (1, 0, 0)

∂P

∂ϕ
= (0, 1, 0)

dA = (0, 0, 1)dϕdθ
‹

F · dA =

ˆ π

0

ˆ 2π

0

(0, 0, 1) · (0, 0, 1)dθdϕ

=

ˆ π

0

ˆ 2π

0

1dθdϕ

= 2π2

So something has gone horribly wrong. We need to figure out how to convert
a unit of polar area to a unit of Cartesian area, and adjust by that conversion
term. First, how can we map coordinates in polar to those in cartesian? Well,
in 2D, we can think about a parametrization of a circle, so we have

x = rcos(θ)

y = rsin(θ)

In 3D we have much the same, only with an added dimension

x = rcos(θ)sin(ϕ)

y = rsin(θ)sin(ϕ)

z = rcos(ϕ)

Now, let’s suppose you had some small vector that represented some step
in polar coordinates (dr, dθ, dϕ). What would this step be in cartesian coordi-
nates? Well, for small enough steps, it makes sense that we should be able to
approximate the transformation linearly. For larger steps, we can break them
into infinitely small steps and repeat. At this point we’re dancing around the
topic, so let’s welcome everyone’s best friend linear algebra! In cartesian, this

5



step vector would look like (dx, dy, dz). So, we want a linear transformation T
that maps (dr, dθ, dϕ) to (dx, dy, dz).dxdy

dz

 = T

drdθ
dϕ


Let’s just focus on one term for now, say how dx and dr relate. We have

already derived a function for x in terms of r and some other stuff, so again we
can use our knowledge of LLAs to find some step dx given a step dr

dx =
dx

dr
dr

Now dx can also vary based on our movement dθ and dϕ, so this is only part
of the story. To get the entirety of dx, we need to sum the partial derivatives
with respect to r, θ, and ϕ.

dx =
∂x

∂r
dr +

∂x

∂θ
dθ +

∂x

∂ϕ
dϕ

Now, in the language of linear algebra, we have written dx as a linear com-
bination of dr, dθ, and dϕ, so let’s put these into our matrix as our first row.
We can repeat the same process for dy and dz to find T .dxdy

dz

 =


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ


drdθ
dϕ


Now, lets not lose sight of our original goal. We need to find the conversion

of area. So, if we find the determinant of this matrix we should have the correct
conversion factor.∣∣∣∣∣∣∣

∂x
∂r

∂x
∂ϕ

∂x
∂θ

∂y
∂r

∂y
∂ϕ

∂y
∂θ

∂z
∂r

∂z
∂ϕ

∂z
∂θ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
sin(ϕ)cos(θ) rcos(ϕ)cos(θ) −rsin(ϕ)sin(θ)
sin(ϕ)sin(θ) rcos(ϕ)sin(θ) rsin(ϕ)cos(θ)

cos(ϕ) −rsin(ϕ) 0

∣∣∣∣∣∣
=cos(ϕ)[r2sin(ϕ)cos(ϕ)cos2(θ) + r2sin(ϕ)cos(ϕ)sin2(θ)]

− (−rsin(ϕ))[rsin2(ϕ)cos2(θ) + rsin2(ϕ)sin2(θ)]

= r2sin(ϕ)cos2(ϕ) + r2sin3(ϕ)

= r2sin(ϕ)

So, the area conversion for polar to cartesian is r2sin(ϕ). Now, if we multiply
by that term, we should then get the correct result. Here we are not integrating
with respect to r, so it is just a constant, and our radius is 1 so r = 1

6



‹
F · dA =

ˆ π

0

ˆ 2π

0

1 · r2sin(ϕ)dθdϕ

=

ˆ π

0

2π · sin(ϕ)dϕ

= 2π [−cos(ϕ)]
π
0

= 4π

Nice!

7


