
We now know how to take surface integrals. The question now is how do
we undo a surface integral? A surface integral takes a vector field and a surface
as inputs, and outputs a real number. So, if we want to talk about the surface
integral at every point, we need a way to get a number related to the surface
integral integral, but that is not related to the surface we are measuring the
flux through. In fewer words, we want a scalar field such that at any point, the
scalar is the surface integral of the vector field on some shape centered at that
point. Formulated this way, the shape we choose matters. We could define it
as the flux through a cube with side length 1, or through a circle of radius 1,
and that would change the scalar field. Ideally though it should be independent
of shape. An initial thought I had was to set the scalar to be the limit of the
flux through a cube if the side lengths approach 0, but this number should just
approach 0. Alternatively, we could look at the ratio between flux and the size
of the cube as the side length approaches 0.

1 Constant Direction

Let’s start with a vector field with only one direction, given by

F (x, y, z) = 2x2î

Next, consider the flux through a box where one side has an x-coordinate of x0

and the other side has an x-coordinate of x0 +∆x, and where the side lengths
in the ĵ and k̂ directions are both l.

The flux through this box is given by

Φ =

‹
Box

F · dA

Because F is only in the î direction, we only need to consider the flux through
the surface with x-coordinate x0 (surface A) and with x-coordinate x0 + ∆x
(side B), as F is perpendicular to An̂ for the other four sides and so the flux
through them is 0.

Φ =

¨
A

F · dA+

¨
B

F · dA

= −2(x0)
2l2 + 2(x0 +∆x)2l2

= l2(−2x2
0 + 2x2

0 + 4x0∆x+ 2∆x2)

= l2(4x0∆x+ 2∆x2)

= l2∆x(4x0 + 2∆x)

If we divide by the surface area, we get

Φ

A
= ∆x(4x0 + 2∆x)
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Now we said we wanted to look at the ratio as volume goes to zero. In this
case, the volume of the box is l2∆x, so we can divide both sides by that and
take the limit as l and ∆x go to 0

lim
∆x→0

1

∆x

Φ

A
= lim

∆x→0

1

∆x
∆x(4x0 + 2∆x)

1

A

dΦ

dx
= lim

∆x→0
4x0 + 2∆x

= 4x0

At this point I was kinda surprised the answer was so nice: 4x0 is also
the derivative of the î component of the vector field F with respect to the x-
direction, evaluated at x0. Now I needed to see what would happen if F had
multiple directions.

2 Multiple Directions

Now we can dream up a more complicated vector field, such as

F (x, y, z) =

(
x2 + xy,

y2

z2
,
1

z

)
We can (for the most part) follow the previous section, but I’ll make a few

changes. We can pick a point (x0, y0, z0) to be one corner of the box, and the
opposite corner will be (x0+∆x, y0+∆y, z0+∆z). Next, we want to name the
surfaces.

Let X be the surface with n̂ = î
Let Y be the surface with n̂ = ĵ
Let Z be the surface with n̂ = k̂

Let X̄ be the surface with n̂ = −î
Let Ȳ be the surface with n̂ = −ĵ
Let Z̄ be the surface with n̂ = −k̂

The flux is once again given by

Φ =

‹
Box

F · dA

This would be annoying to evaluate, but we can make it easier by splitting
things up into components and then using the trick from earlier where we only
have to look at 2 faces instead of 6. First, we know the dot product is linear,
so that

⟨F,An̂⟩ = ⟨F∥î + F∥ĵ + F∥k̂, An̂⟩

= ⟨F∥î, An̂⟩+ ⟨F∥ĵ , An̂⟩+ ⟨F∥k̂, An̂⟩

And we also know that we can split integration across addition, so this
surface integral is also equal to
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=

‹
Box

F∥î · dA+

‹
Box

F∥ĵ · dA+

‹
Box

F∥k̂ · dA

And now we can evaluate each one at a time in a similar way to the single
direction example. For now let’s focus on the î component of F . Like before,
we now only have to consider the X and X̄ surfaces, because the flux through
the other four is 0.

Φî =

¨
X

F∥î · dA+

¨
X̄

F∥î · dA

For the sake of space I’m only going to find the flux through X because
in both integrals the x-value should be treated as a constant, as we’re only
integrating with respect to y and z (because the normal vectors are only in the
î direction.

¨
X

F∥î · dA = −
ˆ z0+∆z

z0

ˆ y0+∆y

y0

x2
0 + x0y dy dz

= −
ˆ z0+∆z

z0

[
x2
0y +

1

2
x0y

2

]y0+∆y

y0

dz

= −
ˆ z0+∆z

z0

x2
0∆y + x0y0∆y +

1

2
x0∆y2 dz

= −
[
x2
0∆yz + x0y0∆yz +

1

2
x0∆y2z

]z0+∆z

z0

= −
(
x2
0∆y∆z + x0y0∆y∆z +

1

2
x0∆y2∆z

)
= −∆y∆z

(
x2
0 + x0y0 +

1

2
x0∆y

)
The flux through X̄ should be pretty similar, but we need to replace x0 with

x0 +∆x, and flip the sign because n̂ is in the opposite direction.

¨
X̄

F∥î · dA = ∆y∆z

(
(x0 +∆x)2 + (x0 +∆x)y0 +

1

2
(x0 +∆x)∆y

)
So adding these two together we have

Φî = −∆y∆z

(
x2
0 + x0y0 +

1

2
x0∆y

)
+∆y∆z

(
(x0 +∆x)2 + (x0 +∆x)y0 +

1

2
(x0 +∆x)∆y

)
= ∆y∆z

(
2x0∆x+∆x2 +∆xy0 +

1

2
∆x∆y

)
= ∆y∆z∆x

(
2x0 +∆x+ y0 +

1

2
∆y

)
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Just like before, we can divide by the volume and then take the limit as it
goes to 0

lim
V→0

Φî

V
= lim

∆x→0
lim

∆y→0
lim

∆z→0

1

∆x∆y∆z
∆y∆z∆x

(
2x0 +∆x+ y0 +

1

2
∆y

)
dΦî

dV
= lim

∆x→0
lim

∆y→0
lim

∆z→0
2x0 +∆x+ y0 +

1

2
∆y

= 2x0 + y0

Further confirming my hopes, this is also equal to the derivative of the î
component of F with respect to the x direction.

Using the exact same method, we can evaluate the surface integrals and find
dΦ
dV for the ĵ and k̂ directions, and we get the same pattern. In the beginning,
we said that the flux through the box is the sum of the flux through the box in
the î, ĵ, and k̂ directions, and the derivative splits across addition, so it follows
that the total dΦ

dV is the sum across all three directions.

Φ =

‹
Box

F∥î · dA+

‹
Box

F∥ĵ · dA+

‹
Box

F∥k̂ · dA

= Φî +Φĵ +Φk̂

d

dV
Φ =

d

dV

(
Φî +Φĵ +Φk̂

)
dΦ

dV
=

dΦî

dV
+

dΦĵ

dV
+

dΦk̂

dV

Now that we have guessed an equality between dΦ
dV in a certain direction and

the derivative of the component of F in that direction, we have

dΦ

dV
=

∂F∥î

∂x
+

∂F∥ĵ

∂y
+

∂F∥k̂

∂z

And going back to what we were originally trying to do, this is the scalar
field derived from the surface integrals of F !

It turns out this is actually a very useful operation on vector fields, so much
so that it has it’s own name and symbol. This is called the divergence of F,
denoted by ∇ ·F , and it is equal to the sum of the partial derivatives of F with
respect to each direction, or the derivative with respect to volume of a surface
integral over a closed surface.

∇ · F =
d

dV

‹
F · dA =

∂F

∂x
+

∂F

∂y
+

∂F

∂z

The scalar field this operation outputs gives a measure of how much the
vectors flow into or out of regions, i.e. whether they are sources or sinks.
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