
1 Examining Reference Frames

1.1 Classical Physics

One of the foundations of classical physics is that velocities add. If we have a cart moving at v1 = 3
m/s, and it ejects a ball moving at v2 = 5 m/s, then from a stationary reference frame (known as the
lab frame) the ball is moving at v0 + v1 = 8 m/s.

1.2 Modern Physics

We now know this is only an approximation that applies at slow velocities. When comparing velocities
close to the speed of light, this property breaks down further. The key player here is one of the two
postulates of the Theory of Special Relativity: that the speed of light is the same in all reference frames.
Let’s set up a world in R4, where coordinates in spacetime are given by (x, y, z, t). If we assume motion
in only one of the three spatial dimensions, we can reduce this down to R2, where now we have one
spatial dimension and one temporal dimension, and where positions in spacetime are given by (x, t).
Now we can begin by thinking about the spacetime positions of various objects as a function of time.

For an object traveling at velocity v in the +x direction, its spacetime coordinates will be given by
(vt, t). Likewise, for an object traveling in the −x direction, its spacetime coordinates are (−vt, t).

1.3 Of Cats and Dogs

Now imagine we have two animals, a cat and a dog. Let’s start in the cat’s reference frame. The cat, in
its own reference frame, is stationary and at the origin, and thus has coordinates (0, t) for all of time.
The dog, however, is moving past the cat at v m/s, and so has coordinates (vt, t). We will also throw in
two photons (γ) emitted by the cat, one traveling in the +x direction and one in the −x direction, both
with velocity c. We can write down the spacetime positions of all four objects below.
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]
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]
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]
Now let’s hop over to the dog’s reference frame. The dog, in its own reference frame, is again

stationary and at the origin, and has coordinates (0, t) for all of time. The cat is now moving away from
the dog at −v, and thus has coordinates (−vt, t). Because of our postulate, both γ+ and γ− must remain
unchanged.
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]
We are still assuming though that tcat = tdog, which might not be the case. Let’s relinquish that

requirement by leaving the vectors equal up to scaling.

1.4 Lorentz Transformation

Using Linear Algebra, we can describe this operation as a change of basis from the cat basis to the dog
basis. Let A ∈ M2x2(R) be that change of basis matrix.
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Letting A =

[
x y
z w

]
, a couple useful equations pop out. From (3),
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−γvt = yt

−γv = y
(5)

From (6)

γt = wt

γ = w
(6)

From (4) using (5),

0 = xvt+ yt

−1

v
y = x

γ = x

(7)

From (1) using (5) and (7),

λ1ct = xct+ yt

λ1 = x+
1

c
y

λ1 = γ − γ
v

c

(8)

From (1) using (8),

λ1t = zct+ wt

1

c
(λ1 − w) = z

1

c
(γ − γ

v

c
− γ) = z

−γ
v

c2
= z

Now we have found x, y, w, and z in terms of only γ, v, and c. If we plug this into A, we find

A =

[
γ −γv

−γ v
c2 γ

]
We then have the added property that spacetime is conserved, so det(A) = 1 is a requirement.

det(A) = γ2 − γ2 v
2

c2
= 1

γ2(1− v2

c2
) = 1

γ2 =
1

1− v2

c2

γ =
1√

1− v2

c2

This quantity γ is known as the Lorentz Factor, and it adjusts time, velocity, and distance under
changes of reference frames.
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