
1 Correction to Ampere’s Law

1.1 Examining an RC Circuit

Suppose we have a circuit with a battery, a resistor, and a capacitor.
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Let E be the voltage of the battery, R be the resistance of the resistor, and C be the capacitance of
the capacitor. Then we can solve for q(t), the charge buildup on the capacitor, and I(t), the current
through the circuit.

By Kirchhoff’s Law,
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By recognizing that I = dq
dt = q̇,
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What we have now is a first-order separable differential equation, which we can solve by separation
of variables.
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If we let q = 0 at t = 0, then c3 = E , and factoring out CE , we have the solution to the differential
equation as

q(t) = CE(1− e−
t

CR ) (1)

We can now also find I(t) as dq
dt .

I(t) =
E
R
e−

t
CR (2)

1.2 Finding the Magnetic Field

Now we can calculate the path integral of the magnetic field on an Amperian loop. Let the curve C be
a circle of radius r centered on the wire. Ampere’s Law then tells us

˛
C
B · dℓ = µ0I (3)

We know this law should hold regardless of the surface we look at, as long as it is bounded by the
curve C.
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If we happen to choose a surface that runs between the parallel plates of the capacitors, the current
drops to 0 and we get an inconsistent result (because we could have picked another surface where the
current wasn’t 0, i.e. one that runs through a wire). Therefore there must be some other quantity that
picks up where the current drops off.

The only other quantity in that region is the electric field. We can calculate this electric field E from
the charge buildup on the capacitor.

Let d be the distance between the parallel plates, and A be the area of each plate.

E = −dV

dr

= −∆VC

d

= − q
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For parallel plates, we have C = ϵ0A
d

E = − 1

ϵ0A
q

We can rearrange to find q in terms of E, and then differentiate to relate it to I. I

q = −ϵ0AE

d

dt
q = − d

dt
ϵ0AE

I = −ϵ0A
d

dt
E

At this point I’m going to drop the sign, but not without explaining it. If we have a left plate with
+q an a right plate with −q, then there exists an electric field that points to the right. If current now
flows away from the left plate to the left, the electric field will decrease, or rather it will increase to the
left. In this way, current and the rate of change of the electric field over time should be in the same
direction, so there shouldn’t be a sign difference.

So, plugging this expression for current into (3),

˛
C
B · dℓ = µ0ϵ0A

d

dt
E

1.3 Extending the Discovery

The A here is the area of the parallel plates, but it makes sense to extend it to actually be the flux
through the surface S bounded by C. Restating our equation, we have

˛
C
B · dℓ = µ0ϵ0

¨
S

d

dt
E · dA

I would like to pause for a moment and just notice the resemblance to Faraday’s Law. They’re almost
identical, except for the sign.

˛
C

E · dℓ = −
¨

S
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Now in the region where we still have current, the electric field is not necessarily changing, so we still
need to account for the current. Adding the original statement of Ampere’s Law back in, we arrive at

˛
C
B · dℓ = µ0

(
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¨
S

d
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)
This equation is known as the Ampere-Maxwell Law.
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